

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Phd Course Structure and Syllabus

SR University

Ananthasagar, Hasanparthy, Warangal Urban 506371 Telangana, India.

SR UNIVERSITY

Department of Electronics and Communication Engineering

R25 Course Structure and Syllabus - Ph.D ECE

I SEM								
S.No.	Course Code Course	Course		Hours / Week				
		L	R	P	C			
1	25EC400PC701	RESEARCH METHODOLOGY AND PUBLICATION ETHICS	4	0	0	4		
2	25EC400PC702	ADVANCED DIGITAL SIGNAL & IMAGE PROCESSING	4	0	0	4		
3	25EC400PC703	ADVANCED WIRELESS COMMUNICATION SYSTEMS	4	0	0	4		
4	25EC400PC704	CMOS VLSI DESIGN	4	0	0	4		
5	25EC400PC705	IOT ARCHITECTURE AND PROTOCOLS	4	0	0	4		

(25EC400PC701) RESEARCH METHODOLOGY AND			L	R	P	C
PUBLICATION ETHICS			4	0	0	4
Course type - Pre-requisite					_	

Unit I Objectives and Types of Research

- 1. Motivation and objectives of research
- 2. Scope and types of research
- 3. Research methods vs methodology
- 4. Research problem identification
- 5. Defining objectives and research questions
- 6. Overview of literature review process
- 7. Identifying research gaps in literature

Unit II Research Design and Methodology

- 8. Principles of engineering research design
- 9. Types of research design
- 10. Features of good research design
- 11. Data collection techniques
- 12. Data analysis methods
- 13. Quantitative and qualitative data analysis
- 14. Sampling methods and data validation
- 15. Simulation tools and software's in ECE
- 16. AI applications in research

Unit III Research Ethics and Publication

- 17. Research ethics-scientific integrity and honesty
- 18. Data integrity and simulation manipulation
- 19. Publication ethics and its importance
- 20. Misconduct in research-falsification, fabrication, and plagiarism
- 21. Plagiarism detection tools
- 22. Authorship and CRediT taxonomy
- 23. Best practices in publication ethics
- 24. Ethical use of AI and big data analytics
- 25. Case studies on ethical violations in engineering research
- 26. Predatory journals and identification tools

Unit IV Journal Access and Metrics

- 27. Types of journals-open access, subscription-based, and hybrid
- 28. Open access movement-Budapest open access initiative
- 29. Repositories and journal databases-SHERPA/RoMEO, DOAJ, arXiv
- 30. Indexing databases overview-Scopus, WoS, ProQuest
- 31. Author metrics-h-index, g-index, i10-index, altmetrics
- 32. Citation analysis and its significance
- 33. Journal metrics-JCR, SNIP, SJR, Citescore

- 34. Characteristics of reputable research journals
- 35. AI tools for journal selection

Unit V Research Writing and IPR

- 36. Technical writing skills for engineering research
- 37. Structuring research papers using IMRAD format
- 38. Selecting appropriate journals for publication
- 39. Peer review process in journals
- 40. Responding to reviewers' comments effectively
- 41. Citation and referencing techniques
- 42. Reference management tools-Mendeley and Zotero
- 43. Presentation tools and visual aids
- 44. Key components of a research proposal
- 45. Intellectual property rights in research
- 46. Patents and copyrights in electronics innovations
- 47. Patent search and filing process
- 48. Patent search tools and databases

Textbooks:

- 1. W. C. Booth, G. G. Colomb, J. M. Williams, J. Bizup, and W. T. FitzGerald, *The Craft of Research*, 5th ed. Chicago, IL, USA: Univ. of Chicago Press, 2024.
- 2. C.R. Kothari and Gaurav Garg, *Research Methodology: Methods and Techniques*, New Age International, 2023.

Reference Books:

1. M. Hammond and J. Wellington, *Research Methods: The Key Concepts*, Routledge Publication, 2021.

(25EC400PC702) ADVANCED DIGITAL SIGNAL AND IMAGE				R	P	C
PROCESSING			4	0	0	4
Course type - Pre-requisite					_	

Unit I Introduction to Digital Signal Processing

- 1. Discrete-time signals and systems overview
- 2. Frequency analysis of LTI Discrete-time systems
- 3. Implementation techniques for discrete-time systems
- 4. Correlation of discrete-time signals
- 5. sampling of discrete-time signals
- 6. Decimation by a factor D
- 7. Interpolation by a factor I
- 8. Sampling rate conversion by a factor I/D
- 9. Implementation methods for sampling rate conversion
- 10. Multistage sampling rate conversion techniques

Unit II Multirate Digital Signal Processing

- 11. Multirate signal processing concepts
- 12. Applications of multirate signal processing
- 13. Design techniques for digital filters
- 14. Finite impulse response filter design
- 15. Infinite impulse response filter design
- 16. Frequency transformations in digital filters
- 17. Digital filter bank architectures
- 18. Two-channel quadrature mirror filter banks
- 19. M-channel QMF bank design
- 20. Implementation of multirate filter banks

Unit III Linear Prediction and Optimum Linear Filters

- 21. Random signals and their characteristics
- 22. Correlation functions and power spectral density
- 23. Innovations representation of stationary random processes
- 24. Forward linear prediction techniques
- 25. Backward linear prediction approaches
- 26. Normal equations in linear prediction
- 27. Levinson-Durbin algorithm for efficient computation
- 28. Properties of linear prediction-error filters
- 29. Applications of linear prediction in signal processing

Unit IV Applications of Adaptive Filters

- 30. Adaptive channel equalization techniques
- 31. Adaptive noise cancellation methods
- 32. Linear predictive coding of speech signals
- 33. Adaptive direct form FIR Filters

- 34. Least mean squares algorithm
- 35. Properties of the LMS algorithm
- 36. Recursive least squares algorithm
- 37. Comparison of LMS and RLS algorithms
- 38. Applications of adaptive filters in signal processing

Unit V Digital Image Processing Fundamentals

- 39. Image models and representation
- 40. Colour image and colour models
- 41. Sampling and quantization in image processing
- 42. Pixel relationships-neighbour and adjacency
- 43. Spatial domain enhancement techniques
- 44. Brightness and contrast enhancement
- 45. Gray level enhancement-image negative
- 46. Histogram equalization for image enhancement
- 47. Smoothing and sharpening filters in spatial domain
- 48. 2D fourier transform and frequency domain filtering

Textbooks:

- 3. J. G. Proakis and D. G. Manolakis, *Digital Signal Processing: Principles, Algorithms, and Applications*, 5th ed. Boston, MA, USA: Pearson, 2021.
- 4. R. C. Gonzalez and R. E. Woods, *Digital Image Processing*, 4th ed. Boston, MA, USA: Pearson, 2022.

Reference Books:

1. A. K. Jain, Fundamentals of Digital Image Processing, Prentice Hall, 2021.

(25EC400PC703)			L	R	P	C
ADVANCED WIRELESS COMMUNICATION SYSTEMS				0	0	4
Course type - Pre-requisite					-	

Unit I Propagation and Noise

- 1. Path-loss in wireless communication
- 2. Large-scale fading and shadowing effects
- 3. Small-scale fading and channel variability
- 4. Doppler spread and coherence time
- 5. Delay spread and coherence bandwidth
- 6. Flat fading vs frequency selective fading
- 7. Multipath fading and its effects
- 8. Rayleigh fading and statistical characterization
- 9. Coherent vs differential detection techniques
- 10. Antenna diversity techniques in fading channels

Unit II Radio Access Technology

- 11. Direct sequence spread spectrum techniques
- 12. Code division multiple access principles
- 13. CDMA transmitter and receiver architectures
- 14. Key features of CDMA systems
- 15. Wideband CDMA systems
- 16. Core features of WCDMA technology
- 17. Orthogonal frequency division multiple access
- 18. Non-orthogonal multiple access schemes
- 19. Comparison of multiple access techniques
- 20. Receiver design in CDMA and WCDMA networks

Unit III Advances in Wireless Communication

- 21. MIMO transceiver design
- 22. MIMO channel modelling techniques
- 23. Capacity analysis in MIMO systems
- 24. MIMO receiver architectures
- 25. Massive MIMO systems
- 26. Cell-free MIMO technology
- 27. Millimeter-wave communication
- 28. Cognitive radio and software defined radio
- 29. Terahertz communication
- 30. Intelligent reflecting surfaces in wireless networks

Unit IV 5G Communication Technology

- 31. 5G operating scenarios and use cases
- 32. Waveform design in 5G networks
- 33. Windowed OFDM in 5G

- 34. Filtered OFDM techniques
- 35. Universal filtered multi-carrier
- 36. Filter bank multi-carrier in 5G
- 37. Generalized frequency division multiplexing
- 38. Adaptive OFDM for dynamic 5G environments
- 39. Modulation and coding schemes in 5G
- 40. Propagation and channel characteristics in 5G

Unit V MIMO Signal Processing with MATLAB

- 41. Modulation techniques in wireless communication
- 42. Waveform generation methods
- 43. Beamforming techniques and applications
- 44. Wireless channel modelling approaches
- 45. Channel estimation in fading environments
- 46. Pilot-based channel estimation techniques
- 47. Implementation of fading channels in simulations
- 48. Effect of channel impairments on modulation and detection

Textbooks:

- 1. A. F. Molisch, *Wireless Communications: From Fundamentals to Beyond 5G*, Hoboken, NJ, USA: Wiley, 2022.
- 2. T. L. Marzetta and H. Yang, *Fundamentals of Massive MIMO*, Cambridge, U.K.: Cambridge Univ. Press, 2016.

Reference Books:

- 1. H. Zhang, B. Di, L. Song, and Z. Han, *Reconfigurable Intelligent Surface-Empowered 6G*. Berlin, Germany: Springer, 2021.
- 2. A. Bhowmick, Y. K. Choukiker, I. Singh, and A. Nallanathan, 5G and Beyond Wireless Communications: Fundamentals, Applications, and Challenges, 1st ed. Boca Raton, FL, USA: CRC Press, Sep. 2024.

(25EC400PC704)		L	R	P	C	
CMOS VLSI DESIGN			4	0	0	4
Course type - Pre-requisite					_	

Unit I VLSI Design Fundamentals

- 1. VLSI design flow
- 2. Design hierarchy in VLSI
- 3. Design regularity, modularity, and locality
- 4. VLSI design styles
- 5. Design quality
- 6. Packaging technology
- 7. MOS device design equations
- 8. Second-order effects in MOS design
- 9. Complementary CMOS inverter DC characteristics

Unit II Circuit Characterization and Performance Estimation

- 10. Circuit characterization and performance estimation
- 11. Parasitic effects in integrated circuits
- 12. Resistance estimation
- 13. Capacitance estimation
- 14. Inductance and its effects
- 15. Switching characteristics of CMOS circuits
- 16. CMOS gate transistor sizing
- 17. Power dissipation in CMOS circuits
- 18. CMOS logic structures
- 19. Clocking strategies

Unit III CMOS Process and Layout Considerations

- 20. CMOS process enhancement techniques
- 21. Layout considerations
- 22. Interconnect circuit elements
- 23. Stick diagram
- 24. Layout design rules
- 25. Latch-up in CMOS circuits
- 26. Latch-up triggering mechanisms
- 27. Latch-up prevention techniques
- 28. Technology-related CAD issues

Unit IV CMOS Combinational and Sequential Logic Design

- 29. Static CMOS logic design
- 30. Logic effort and delay estimation
- 31. Ratioed logic and its characteristics
- 32. Pass transistor logic design

- 33. Dynamic logic-principles and operation
- 34. Speed and power dissipation in dynamic logic
- 35. Cascading of dynamic logic gates
- 36. CMOS transmission gate logic
- 37. Static latches and registers
- 38. Mux-based latches and master-slave edge-triggered registers

Unit V Reprogrammable Logic Devices and Gate Array Design

- 39. Reprogrammable gate arrays-overview and applications
- 40. Commercially available simple programmable logic devices
- 41. Complex programmable logic devices-architecture and use cases
- 42. Field programmable gate arrays-structure and features
- 43. Comparison of SPLDs, CPLDs, and FPGAs
- 44. Gate array design methodology
- 45. Sea-of-gates architecture
- 46. Design flow for gate arrays
- 47. Programming technologies in reprogrammable devices
- 48. Applications of reprogrammable logic in VLSI systems

Textbooks:

- 5. N. H. E. Weste and D. Harris, *CMOS VLSI Design: A Circuits and Systems Perspective*, 5th ed. Pearson Education, 2022.
- 6. S. Saurabh, Introduction to VLSI Design Flow, Cambridge University Press, 2023.

Reference Books:

- 2. S. Saurabh, Introduction to VLSI Design Flow, Cambridge University Press, 2023.
- 3. E. G. Friedman and R. Bairamkulov, *Graphs in VLSI*, Springer, 2023.

(25EC400PC705) IOT ARCHITECTURE AND PROTOCOLS				R	P	C
IOT ARCHITECTURE AND PROTOCOLS			4	0	0	4
Course type - Pre-requisite		Pre-requisite	-			

Unit I Fundamentals of IoT

- 1. Evolution of the internet of things
- 2. Enabling technologies for IoT
- 3. Machine-to-machine communication
- 4. IoT world forum standardized architecture
- 5. Simplified IoT architecture
- 6. Core IoT functional stack
- 7. Role of fog, edge, and cloud computing in IoT
- 8. Functional blocks of an IoT ecosystem
- 9. Sensors and actuators in IoT
- 10. Smart objects and connecting smart objects

Unit II IoT Protocols

- 11. IoT access technologies-physical and MAC layers
- 12. Topology and security of IEEE 802.15.4
- 13. Topology and security of IEEE 802.11ah
- 14. Security and features of LoRaWAN
- 15. Network layer-IP versions in IoT
- 16. Constrained nodes and constrained networks in IoT
- 17. 6LoWPAN-IPv6 over low power wireless personal area networks
- 18. SCADA systems for IoT application transport
- 19. Application layer protocols-CoAP
- 20. Application layer protocols-MQTT

Unit III Design and Development of IoT Applications

- 21. IoT design methodology
- 22. Embedded computing logic in IoT systems
- 23. Microcontroller-based IoT systems
- 24. System on chips in IoT applications
- 25. IoT system building blocks
- 26. Overview of IoT platforms
- 27. Raspberry Pi as an IoT hardware platform
- 28. IoT hardware platform selection criteria
- 29. Integration of sensors with IoT platforms
- 30. IoT platform software and middleware

Unit IV Data Analytics and Supporting Services

- 31. Introduction to data analytics in IoT
- 32. Structured vs unstructured data
- 33. Data in motion vs data at rest

- 34. IoT data analytics challenges
- 35. Data acquisition in IoT/M2M systems
- 36. Organizing data in IoT/M2M environments
- 37. Computing with cloud platforms for IoT/M2M applications
- 38. Cloud services in IoT/M2M ecosystems
- 39. Everything as a service (XaaS) in IoT
- 40. Cloud service models for IoT applications
- 41. Supporting services for IoT data analytics

Unit V Case Studies/Industrial Applications

- 42. IoT applications in smart homes
- 43. IoT in infrastructure and building management
- 44. IoT-based security systems
- 45. IoT in industrial automation
- 46. IoT for home appliances
- 47. Other IoT electronic equipment and devices
- 48. Industry 4.0 and IoT integration

Textbooks:

- 1. R. Herrero, *Fundamentals of IoT Communication Technologies*, Cham, Switzerland: Springer Nature, Apr. 2022.
- 2. Rajkamal, *Internet of Things: Architecture, Design Principles and Applications*, New Delhi, India: McGraw Hill Higher Education, Jun. 14, 2022.

Reference Books:

1. F. J. Dian, Fundamentals of Internet of Things: For Students and Professionals, Hoboken, NJ, USA: Wiley, Nov. 2022.